2207.06554v1 [cs.HC] 13 Jul 2022

arxXiv

Streamlining Visualization Authoring in D3 Through User-Driven
Templates

Alisha Varma’
University of Maryland
Bissaka Kenah'
University of Maryland

Hannah Bako*
University of Maryland

ABSTRACT

D3 is arguably the most popular tool for implementing web-based
visualizations. Yet D3 has a steep learning curve that may hinder it’s
adoption and continued use. To simplify the process of programming
D3 visualizations, we must first understand the space of implemen-
tation practices that D3 users engage in. We present a qualitative
analysis of 2500 D3 visualizations and their corresponding imple-
mentations. We find that 5 visualization types (Bar Charts, Geomaps,
Line Charts, Scatterplots and Force Directed Graphs) account for
80% of D3 visualizations found in our corpus. While implementa-
tion styles vary slightly across designs, the underlying code structure
for all visualization types remains the same; presenting an opportu-
nity for code reuse. Using our corpus of D3 examples, we synthesize
reusable code templates for eight popular D3 visualization types
and share them in our open source repository. Based on our results,
we discuss design considerations for leveraging users’ implemen-
tation patterns to reduce visualization design effort through design
templates and auto-generated code recommendations.

Index Terms: Human-centered computing— Visualization—
Visualization systems and tools—Visualization toolKkits;

1 INTRODUCTION
Visualization languages are popular tool for creating interactive vi-
sualizations [23|], where D3 [5]] is one of the most well-known and
expressive library for creating web based visualizations [[1,10411}13].
However, D3 is notoriously complex, often requiring extensive pro-
gramming experience to use [23/[25]. Though simpler languages
(e.g., Vega-Lite [26]) and direct manipulation tools (e.g., Data Il-
lustrator [20] and Lyra [7,[33]]) are available, they do not solve the
user’s problem if their interests are specific to D3. For example, the
user may be required to use D3 at work, or they might be interested
in adapting a specific D3 example found online that is not supported
by less expressive tools. These users can’t pivot to simpler tools or
languages, and still need easier ways to program D3 visualizations.
However, easing the D3 implementation process requires that we
first gain an understanding of what visual and interactive design
patterns people frequently use when programming D3 visualizations.
Such information can explain users’ goals when creating a visualiza-
tion and what they might struggle with in the process. A plethora of
D3 examples are available on repositories such as Bl.ocks.org [3]]
and GitHub [24] and services like Observable [4], which could
enrich our understanding of users’ implementation processes.

*e-mail: hbako@cs.umd.edu
Te-mail:alishav @terpmail.umd.edu
fe-mail:afaboro @terpmail.umd.edu
$email:mhaiderl @terpmail.umd.edu
Iemail:fnerrise @terpmail.umd.edu
lemail:bkenah @terpmail.umd.edu
**e-mail:leibatt @cs.washington.edu

Anuoluwapo Faboro*
University of Maryland

Favour Nerrisel
University of Maryland

Mahreen Haider®
University of Maryland
Leilani Battle**
University of Washington

ale A\le ala O
w
3 o

® 0
A \

° o
-

Figure 1: Examples of bespoke visualizations from our analysis. (A)
renders the number of IMDB votes and corresponding ratings of
movies in a movies dataset. (B) is a narrative chart of scenes from
Star Wars: Episode IV. (C) visualizes a braille clock, (D) is a D3
rendering of Sierpinski Charlet, and (E) is a rendering of bounding
box collisions using D3’s force simulation.

In this paper, we present an analysis of D3 code repositories and
example galleries, highlighting common patterns to programming
D3 visualizations. We mined and qualitatively analyzed 2500 exam-
ples from GitHub, Bl.ocks.org, and Observable. To identify common
strategies employed by D3 users, we analyze prevalent visualization
types, the interactions (if any) used in these visualizations, and their
corresponding code implementations.

We find that standard visualizations (Bar charts, Geographic maps,
Line Charts, Scatterplots and Graphs) account for over 80% of
the visualizations in our corpus, consistent with prior work []1].
Furthermore, we observe a consistent pattern across our corpus:
users’ implementation strategies were largely the same within each
visualization type. We also find that interactions feature prominently
within users’ D3 implementations, and certain interaction types are
commonly associated with specific visualization types. However
a notable fraction of users also created bespoke visualizations (see
[Figure 1)), suggesting quantifiable limits to common design patterns.

To make our findings actionable, we synthesize visualization
templates for eight popular D3 visualizations, which encapsulate the
observed implementation practices of D3 users. These templates
are available through our open source repository|'} Informed by our
observations, we discuss critical design considerations for future
visualization programming tools that involve code reuse and user-
driven recommendations for visualization and interaction design.

To summarize, we make the following contributions in this paper:

e We analyze common visualization and implementation

patterns across 2500 D3 examples from three online reposito-
ries.

* We provide a suite of general purpose templates encapsulat-

ing common implementation strategies for the most popular
D3 visualization and interaction types.
* We discuss critical design considerations for future visual-

lhttps ://osf.io/k58bp/?view_only=
72£a3798bbaa4263b5ad662b26a70ch3.

https://osf.io/k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70cb3
https://osf.io/k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70cb3

ization programming tools based on our findings.

2 RELATED WORK
Our work builds on research in visualization authoring, interaction
taxonomies, and templates. We review the relevant literature below.

Visualization Authoring Tools: There are a plethora of tools
for producing visualization designs, including language- (e.g [,
16,/26,28]) and GUI-based (e.g [[7,20,29,33]) tools. Specification
languages are expressive, but require considerable programming
skills to use them well [8l/1530]]. GUI-based tools eliminate the need
for programming, but in return take control away from the user [|14]
and still have a considerable learning curve [25]. Visualization users
may be better supported by focusing on how to simplify the process
of using visualization languages. To this end, we investigate users’
implementation practices when using languages like D3.

Visualization and Interaction Taxonomies: Interactions are
critical because they allow users to elicit a deeper understanding
of their data [9]. Heer and Shneiderman provide a taxonomy of
12 interaction tasks grouped into three high-level categories: (1)
Data & View Specification tasks, (2) View Manipulation tasks and
(3) Process & Provenance tasks [12]]. Brehmer and Munzner [6]
bridge the gap between high-level and low-level interaction task][s]
classification by connecting complex high-level tasks as a sequence
of simpler low-level tasks organized by the intent for the task being
performed. To model the space of possible interactions, we incorpo-
rate tasks from Brehmer and Munzner’s typology (6] to analyze the
space of interactions used in D3 visualizations.

Templates: Code reuse has been a strongly advocated and doc-
umented programming practice [18[19]. Within the visualiza-
tion community, some tools utilize templates to generate visual-
izations [[17,/21,122] and style templates [[11]. Our work extends
this line of research on using synthesized templates to support code
reuse. However, unlike past work that focuses on the underlying
style structure of D3 charts [[11]], our focus is on understanding what
users consider to be intuitive implementation strategies for D3 and
extracting the commonalities across these strategies.

3 BUILDING A CORPUS OF D3 EXAMPLES
To simplify visualization implementation in D3, we first need to
gain a deeper understanding of how users currently use D3. The
first step of our analysis was to collect a corpus of publicly available
D3 examples from the internet. We adopted Battle et al.’s approach
of identifying “islands” or specific websites with thousands of D3
examples [[1]. We considered three sources, which together represent
the most well-known online repositories containing D3 examples:
Bl.ocks.org [3], Observable [4] and GitHub [24]. To assess the
quality and viability of each dataset for our analysis, we scraped 500
random D3 examples from each corpus and qualitatively analyzed
them. To maintain quality within our dataset, a visualization or
interaction is only classified if (1) the example explicitly imports D3
and (2) when run, the code produces a visualization in the browser.
We found that the GitHub examples were low quality, due pri-
marily to incomplete code. In addition, unlike the (now deprecated)
Bl.ocks.org repository, exported Observable examples are designed
to operate within the Observable environment rather than standard
web projects, making it more difficult to programmatically analyze
them for D3 API usage. Overall, the Bl.ocks.org examples were of
consistently higher quality than the GitHub and Observable exam-
pleﬂ We believe this difference in quality stems from the maturity
of the Bl.ocks.org repository compared to Observable, as well as
its intended use as a robust repository of D3 examples compared to
GitHub. For these reasons, we analyzed an additional 1000 examples
from Bl.ocks.org, resulting in a final corpus with 2500 examples. We
report on the visualizations found in all three sources but focus the
bulk of our analysis in[section 6 on the examples from Bl.ocks.org.

2The coded examples are available on OSF: https://osf.io/k58bp/
?view_only=72fa3798bbaa4263b5ad662b26a70cb3.

4 WHAT VISUALIZATION TYPES DO D3 USERS IMPLEMENT?
We qualitatively coded the corpus by classifying what visualiza-
tion(s) were implemented in each example according the taxonomy
of D3 visualizations observed by Battle et al [1]]. This resulted in
21 visualization types which we refer to as standard visualizations.
Each distinct visualization found in an example was classified sepa-
rately. For instance, if both a bar chart and scatterplot were used in
a multiple linked view visualization, we classified them separately
by visualization type. We discuss the results of our analysis below.

Bl.ocks.org Corpus: We coded a total of 1500 D3 examples
from Bl.ocks.org from which 1265 viable visualizations were found.
994 (78.6%) of these visualizations were standard D3 visualization
types such as scatter plots, area charts, voronoi diagrams, etc.. Bar
charts (19.8% n=251), Geographic maps (15.2% n=192), and line
charts (10.8% n=137) were most prevalent (see [Figure 2a). The
top 5 standard visualizations i.e., Bar Charts, Geographic Maps,
Line Charts, Scatterplots and Graphs account for 80.1% of all the
standard visualizations implemented with the 16 other visualization
types [e.g. Heatmap(1.0%), Voronoi(0.9%), Sankey(0.8%) etc.] ac-
counting for the remaining 19.9%, as shown in[Figure 2a] We find
that 21.4% (n=271) of these visualizations could not be classified
by of the 21 standard visualization types. These examples were dia-
grams, art, or highly specialized visualizations, such as a departures
board for flights, braille clocks, etc., which we classify as bespoke
visualizations (see for examples).

Our analysis shows that the overwhelming majority of visualiza-
tions still conform to the most common visualization types observed
on the web. Consistent with prior work [1]], just 5 visualization types
account for the vast majority of these common visualizations. This
suggests that we can support the needs of most D3 users by focusing
on the most popular visualizations from our dataset.

Observable Corpus: We coded 500 Observable notebooks.
However, 49.2% of these notebooks were unrelated to D3. For
example, they did not involve data visualizations or used other vi-
sualization tools [’} Of the remaining 254 notebooks, we found 304
viable visualizations, of which 237 (78%) were standard D3 visu-
alization types comprised of Bar charts (20.7% n=63), Line charts
(13.2%, n=40), and Scatterplots (12.2%, n=37). The distribution of
the Observable visualizations mimicks that of the Bl.ocks.org corpus
as the top 5 visualizations account for 79% of the observed visualiza-
tions while 11 visualization types account for the remaining 21% of
the visualizations. However the rankings for the top 5 visualization
types are different in both corpora as seen in [Figure 2a]

We observed a total of 67 (22%) bespoke visualizations in our
corpus. These visualizations range from Hyperboloid plots to Car-
tograms as seen in[Figure 1] We find that the bespoke charts created
in Observable were more complicated than those available in other
mediums. This may be a result of newer visualization libraries and
extensions that are available in the Observable environment.

GitHub Corpus: 500 GitHub repositories were coded in our
analysis. While all of these repositories imported the D3 API, only
366 contained valid data visualizations. We found 638 visualizations
of which 71.2% (n=454) were standard D3 visualization types. The
most popular visualization types were Bar charts (30.4% n=138),
Line charts (15.2% n=69) and Scatterplots (13% n=59). Similar to
our other corpora, the top 5 visualizations make up 73.8% of all
standard visualizations on the internet as seen in We
observed a total of 184 (28.8%) bespoke visualizations in our corpus.

5 WHAT INTERACTION TYPES DO D3 USERS IMPLEMENT?

Next, we classify the kinds of interactions users implement in D3,
using a similar approach to[section 4, However, existing interaction
taxonomies focus on interface elements rather than code components,

3Please see https://observablehq.com/@thisistaimur/warc-
study-analysis| and https://observablehg.com/@aldo/tuftes-
charts-in-vega-1lite for examples.

https://osf.io/k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70cb3
https://osf.io/k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70cb3
https://observablehq.com/@thisistaimur/warc-study-analysis
https://observablehq.com/@thisistaimur/warc-study-analysis
https://observablehq.com/@aldo/tuftes-charts-in-vega-lite
https://observablehq.com/@aldo/tuftes-charts-in-vega-lite

Bl.ocks.org Observable GitHub
custom custom custom
bar bar bar
geomap line line
line scatterplot scatterplot
scatterplot geomap geomap
graph heatmap pie
area graph graph
bubble bubble bubble
treemap tree treemap
pie sankey donut

others others Others

T T T T T T — T T T T T
0 50 100 150 200 250 0 10 20 30 40 50 60 70 0 50 100
Total Observations
(a) Rankings of observed visualizations in our analysis.

J
200

(b) Observed visualization-interaction pairings.

Figure 2: Results from analysis carried out on the three example corpus (a) presents the frequency of the top visualization types and their
corresponding interactions observed in our datasets. Visualizations with 1% and less frequency are captured in the "others” category. (b)
shows the number of times different interaction types were implemented for each visualization type in our corpus

requiring us to translate D3 API components into abstract interaction
types. In examining the D3 API and documentation, we extracted
6 common interaction widget types: Brush, Click, Drag, Hover,
Visualize, and Zoom. We classify these interactions using Brehmer
and Munzer’s multi-level typology of visualization tasks [0].

* Select: highlighting data points to emphasize salient informa-
tion, often using “Brush”, “Hover”, and “Click” widgets.

* Encode: changing which data attributes are encoded in a visu-
alization, often using a GUI widget; we use the term “Visualize”
to represent all such encoding interactions.

» Navigate: Re-centering a visualisation on a specific subset of
points and granularity, often using “Zoom & Pan” widget.

» Arrange: sorting and organizing marks within the visualiza-
tion, such as by using a “Drag” widget.

In general we observe a high number of interactions being imple-
mented within visualizations suggesting that users may follow rec-
ommended best practices to enable interaction when programming
their visualizations [31]]. We discuss the details of our analysis for
the Bl.ocks.org and Observable corpus below

Bl.ocks.org Corpus Of the 1265 viable examples coded, 659
(52.1%) contained interactions. 859 interaction implementations
were identified within these examples, with the most popular widget
types being Hover (n=390), Visualize (n=118) and Click (n=100).
We observed 62.6% of all interactions were used to “Brush”,
“Hover”, and “Click” specific data points in visualizations. Mapping
these observations to the Brehmer and Munzer typology, we find se-
lection to be the main form of interaction used, being implemented
in 62.6% of D3 visualizations in our analysis. 13.7% of implemented
interactions encode new data attributes, 13.2 % support navigation
through visualizations and 10.5% to arrange marks on the screen
using the “Drag” widget. Our findings also revealed that certain
interaction types were often implemented together in the examples.
Examining these associations, we identify 39 distinct pairs of in-
teractions with “Click and Hover” being the most frequent pairing
representing 14% of all occurrences.

Observable Corpus We had a total of 304 visualization examples
in our Observable corpus, of which 48.2% were interactive. 42% of
all interactions represented selections and a total of 174 interactions
were identified with encoding new data attributes using the Visualize
widget being used 35.6% (n=62) of the time. 12.1% with navigating
through visualizations, and 10.3% with arranging visual elements
in visualizations. 58 of these interactions (33.3%) were implemented
in pairs with 12.1% belonging to the “Visualize and Hover” pairs.

6 HOW ARE THESE VISUALIZATIONS BEING IMPLEMENTED?
A key step in clarifying the needs of D3 users is to understand how
they implement visualizations. For each visualization and interaction
type, we examined multiple user implementations to understand:
the syntactical correctness of each example, the organization and
structure of the code, and the API calls used.

“4Interactions were not coded for GitHub due to data quality issues.

6.1 Code Structure

At the low level, users’ programs vary slightly for visualizations of
the same type, such as by variable names, white space used, and
so on. However, when the code is examined at the structural level,
the overall order and API calls remain the same. For example, the
default code order across visualizations begins with defining the
dimensions for the visualization (i.e. width, height, and margins)
and creating an SVG object where subsequent visualization elements
will be housed. The baseline code for specific visualization types
follow almost the same structure. For example, the highlighted code
blocks in[Figure 3aland [Figure 3b|highlight similar code structures
for defining point marks in two different scatterplot implementations,
with slight differences to fit users’ datasets. Several examples even
contained direct links to other repositories as inspiration. Oftentimes,
multiple lines of code were copied directly from these reference
repositories. This corroborates past observations on code copying as
a common implementation strategy in the D3 community [2}{13]].

6.2 Use of Interactions across Visualization Types
To expand upon our observation, we measure how often popular
interaction widgets are implemented for each visualization type.

Some interaction widgets appear to be universal. We found
that certain widget types were pervasive across most visualizations.
For example, hovering is the most common interaction widget for
nearly every visualization type observed in[Figure 2b] These find-
ings suggest that certain widget types may be considered universal,
hinting at code blocks that may be strong candidates for reuse.

The number of interaction widgets varies across visualiza-
tion types. For certain visualization types (e.g. Graphs) including at
least one widget was the convention. For example, 49% of the line
chart examples implemented had no interaction widgets, whereas
82% of the graph examples had at least one widget implemented.

Users implement interaction widgets according to visualiza-
tion type. We find that the types of interaction widgets implemented
varies by visualization type (see [Figure 2b). For example, we see
in that line charts have a wider set of implemented inter-
action widgets compared to area charts, where hovering was more
prevalent in line charts and brushing in area charts. We also see
that geographic maps are more likely to have zooming implemented
compared to other visualization types, and graphs are more likely to
support dragging. Furthermore, the set of interactions implemented
were dependent on the visualization type. For example, brushing
and hovering were often implemented together in scatterplots.

These findings indicate that for certain D3 implementations, users
could benefit from multiple modes of interaction to explore a visual-
ization. For example, the user may (for graphs) or may not (for bar
charts) need to consider incorporating interactions and may want to
use specific sets of interactions to match existing D3 examples.

6.3 Generating Reusable D3 Templates
Given an understanding of the most common visualizations

and interactions (section 5)) implemented in D3, we sought

" translate(0, s{area. height -
" translate(${margin. left},0)"))

/ bgend) //

(a) Scatterplot Example

(b) Scatterplot Example

(c) Generic Template

Figure 3: Reoccurring code blocks (1, 2 & 3) in two scatterplot examples (A & B) are synthesized into a generic scatterplots template (C).

to ease the burden of users in implementing these visualizations.
To do this, we randomly selected examples of eight common vi-
sualization types and translated common implementation patterns
(subsection 6.1)) into general-purpose code templates. While pub-
licly available D3 templates exist on platforms like D3Live [17],
they are curated based on the template designer’s own understanding
of D3. Our user-driven template synthesis approach encapsulates
common programming practices from hundreds of D3 users into a
single template.

D3 API calls used within examples remain consistent for visu-
alization types. For example, scatterplots and bubble charts con-
sistently contain calls to create circle marks. We rely on D3’s API
structure and our observations of common D3 code structures to in-
fer the purpose of each line of code and the role they play in creating
a visualization. Through this analysis, we manually extracted com-
mon code sections for each visualization type. Using scatterplots as
an example, we identified common code sections for creating circle
marks as shown in [Figure 3al & [Figure 3b} These code sections were
combined to generate a working generic implementation of each vi-

sualization that can be modified to fit a user’s dataset (see[Figure 3c).

These generic implementations can be used as templates |

7 DISCUSSION

Using our insights into how D3 users implement visualizations, pre-
vious work, and our own experiences working with D3, we provide
design considerations for simplifying the visualization programming
process with visualization languages.

C1: Maximize code component reuse: Code reuse is a docu-
mented and advocated skill within the programming and D3 com-
munity [2[T3]. Our analysis in[section | reveals striking structural
similarities for various visualization types. Users tend to imple-
ment D3 visualizations in consistent ways, where these practices are
largely drawn from existing examples. However, recent literature
also finds that users often struggle to reuse existing D3 examples
because they are typically not modularized, making it hard to extract
only the relevant functionality [2]. We could speed up the imple-
mentation process by automating the adoption of established coding
conventions across visualization and interaction types. Based on this
premise, we synthesize code femplates from existing D3 examples
to capture existing implementation patterns among D3 users, which
could be adopted in future visualization tools. Furthermore, we
annotate major code blocks within each template with their intended
purpose. This makes it easy for users to quickly associate a code
segment in the flow of a template with the specific task it performs.
C2: Use usage statistics to drive adaptive recommendations:
Our analysis in shows that a high fraction of D3 examples
allow their end users to explore the underlying data through interac-
tions, reinforcing the importance of interaction in visualizations [9].
In contrast, we see an emphasis on recommending visualization
designs but not interaction designs in most visualization recom-
mendation and automated design systems [[32]]. We observed many

5 The curated templates are available on OSF: https://osf.io/
k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70ch3

combinations of visualizations and interactions. As a result, D3
users interested in implementing interactions would have to sift
through numerous examples to identify the appropriate implemen-
tation conventions for their target visualization type. To save time
and effort, we can instead automatically recommend a curated list of
appropriate interactions to implement for a given visualization type.
C3: Involve the community in tool refinement: The large and
active D3 community provides a unique opportunity to co-design
effective visualization tools. For example, recommendation mod-
els could be improved by combining visualization heuristics and
reinforcement learning to actively learn from the behaviour of D3
users. In terms of interactions, recommenders could infer the current
visualization context from the user’s code and and compare it with
similar visualizations created in the past to provide customized rec-
ommendations for potential interactions to implement. Community
members could even take a more active role in the tuning of recom-
menders by providing direct guidance, e.g., annotations, for what the
underlying models should learn (e.g., code modularization, percep-
tually effective encoding parameters) or should not learn (e.g., poor
coding conventions or encoding decisions) from existing examples.

7.1 Limitations

Our work relies on the efforts of thousands of D3 users who publish
their work on D3 forums online. Our results are representative of the
this population of users but may not generalize to other contexts of
D3 usage such as those who use D3 to implement visualizations for
news articles or internal usage within organizations. Furthermore,
our analysis of the interactions in D3 focuses mainly on interactions
that are supported by the native D3 API. We acknowledge that this
potentially excludes other interactions that are supported by external
modules and libraries, thereby limiting the richness of interaction
types found in our study. However, our analysis techniques can easily
be applied to other languages, modules and libraries for interactive
visualization programming (e.g., Vega-Lite [27]]). We also encourage
the community to conduct studies in the future to verify how and
whether templates simplify the visualization design process.

8 CoONCLUSION AND FUTURE WORK

In this paper, we investigate visual and interactive design patterns
implemented by D3 users through 2500 examples shared in three
online repositories (Bl.ocks.org, Observable, GitHub). Five visual-
ization types accounted for over 80% of all the D3 visualizations we
observed. We observed that users generally used the same strategies
to implement the same visualization type. Furthermore, certain inter-
action types were frequently paired with specific visualization types.
We extracted the common implementation strategies we observed
and synthesized templates representing universal building blocks for
implementing the most popular D3 visualizations and interactions.
These templates provide a baseline that D3 users can build upon to
program new visualizations with less time and effort.

ACKNOWLEDGMENTS

This work was supported in part by NSF award 1IS-1850115 and a
VMWare Early Career Faculty Grant.

https://osf.io/k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70cb3
https://osf.io/k58bp/?view_only=72fa3798bbaa4263b5ad662b26a70cb3

REFERENCES

[1]

[2

—

[3]
[4]

[5

=

[6]

[8

=

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22]

L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker. Beagle: Automated extraction and interpretation of visualiza-
tions from the web. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1-8, 2018.

L. Battle, D. Feng, and K. Webber. Exploring d3 implementation
challenges on stack overflow, 2022. (concurrent VIS *22 submission).
M. Bostock. Popular blocks, 2016 (accessed November, 2019).

M. Bostock and M. Meckfessel. Observable, 2016 (accessed July,
2021).

M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. [EEE transactions on visualization and computer graphics,
17(12):2301-2309, 2011.

M. Brehmer and T. Munzner. A multi-level typology of abstract vi-
sualization tasks. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2376-2385, 2013.

H. Carr, P. Rheingans, H. Schumann, A. Satyanarayan, and J. Heer.
Lyra: An interactive visualization design environment. In Eurographics
Conference on Visualization, vol. 33, p. 10. Citeseer, 2014.

V. Dibia and C. Demiralp. Data2vis: Automatic generation of data
visualizations using sequence-to-sequence recurrent neural networks.
IEEE computer graphics and applications, 39(5):33-46, 2019.

E. Dimara and C. Perin. What is interaction for data visualiza-
tion? [EEE Transactions on Visualization and Computer Graphics,
26(1):119-129, 2020.

J. Harper and M. Agrawala. Deconstructing and restyling d3 visual-
izations. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST *14, p. 253-262. Associa-
tion for Computing Machinery, New York, NY, USA, 2014. doi: 10.
1145/2642918.2647411

J. Harper and M. Agrawala. Converting basic d3 charts into reusable
style templates. IEEE Transactions on Visualization and Computer
Graphics, 24(3):1274-1286, 2018. doi: 10.1109/TVCG.2017.2659744
J. Heer and B. Shneiderman. Interactive dynamics for visual analy-
sis. Commun. ACM, 55(4):45-54, Apr. 2012. doi: 10.1145/2133806.
2133821

E. Hoque and M. Agrawala. Searching the visual style and structure of
d3 visualizations. IEEE Transactions on Visualization and Computer
Graphics, 26(1):1236-1245, 2020. doi: 10.1109/TVCG.2019.2934431
E. Horvitz. Principles of mixed-initiative user interfaces. In Pro-
ceedings of the SIGCHI conference on Human Factors in Computing
Systems, pp. 159-166, 1999.

K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo. Vizml: A
machine learning approach to visualization recommendation. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pp. 1-12, 2019.

P. T. Inc. Collaborative data science, 2015.

E. Katzenstein. D3.js/live, 2016 (accessed August, 2021).

M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of
copy and paste programming practices in oopl. In Proceedings. 2004
International Symposium on Empirical Software Engineering, 2004.
ISESE’04., pp. 83-92. IEEE, 2004.

Y. Lin, G. Meng, Y. Xue, Z. Xing, J. Sun, X. Peng, Y. Liu, W. Zhao,
and J. Dong. Mining implicit design templates for actionable code
reuse. In 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 394-404. IEEE, 2017.

Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI "18, p. 1-13. Association for Computing Machinery, New
York, NY, USA, 2018. doi: 10.1145/3173574.3173697

M. Mauri, T. Elli, G. Caviglia, G. Uboldi, and M. Azzi. Rawgraphs:
A visualisation platform to create open outputs. In Proceedings of the
12th Biannual Conference on Italian SIGCHI Chapter, CHItaly *17.
Association for Computing Machinery, New York, NY, USA, 2017.
doi: 10.1145/3125571.3125585

A. M. McNutt and R. Chugh. Integrated Visualization Editing via
Parameterized Declarative Templates. Association for Computing

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

Machinery, New York, NY, USA, 2021.

H. Mei, Y. Ma, Y. Wei, and W. Chen. The design space of construc-
tion tools for information visualization: A survey. Journal of Visual
Languages & Computing, 44:120-132, 2018.

T. Preston-Werner, C. Wanstrath, P. Hyett, and S. Chaconl. Github,
2008 (accessed July, 2019).

A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization authoring
systems. IEEE transactions on visualization and computer graphics,
26(1):461-471, 2019.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. /[EEE transactions on visual-
ization and computer graphics, 23(1):341-350, 2016.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE Transactions on Visual-
ization and Computer Graphics, 23(1):341-350, 2017.

A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega:
A streaming dataflow architecture for declarative interactive visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
22(1):659-668, 2016.

C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases.
IEEE Transactions on Visualization and Computer Graphics, 8(1):52—
65, 2002.

M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. Parameswaran. To-
wards visualization recommendation systems. ACM SIGMOD Record,
45(4):34-39, 2017.

J.S.Yi, Y. a. Kang, J. Stasko, and J. A. Jacko. Toward a deeper under-
standing of the role of interaction in information visualization. /[EEE
Transactions on Visualization and Computer Graphics, 13(6):1224—
1231, 2007.

Z. Zeng, P. Moh, F. Du, J. Hoffswell, T. Y. Lee, S. Malik, E. Koh,
and L. Battle. An evaluation-focused framework for visualization
recommendation algorithms. IEEE Transactions on Visualization and
Computer Graphics, 28(1):346-356, 2022. doi: 10.1109/TVCG.2021.
3114814

J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Design-
ing interactive visualizations by demonstration. IEEE Transactions on
Visualization and Computer Graphics, 2020.

	1 Introduction
	2 Related Work
	3 Building a Corpus of D3 Examples
	4 What visualization types do D3 users implement?
	5 What interaction types do D3 users implement?
	6 How are these visualizations being Implemented?
	6.1 Code Structure
	6.2 Use of Interactions across Visualization Types
	6.3 Generating Reusable D3 Templates

	7 Discussion
	7.1 Limitations

	8 Conclusion and Future Work

