
ar
X

iv
:2

40
5.

14
34

1v
5

 [
cs

.H
C

]
 4

 J
ul

 2
02

5

How Do Observable Users Decompose D3 Code? A Qualitative Study
Melissa Lin* †

Carnegie Mellon University
Heer Patel* ‡

University of Washington
Medina Lamkin ‡

University of Washington
Hannah Bako §

University of Maryland

Leilani Battle ‡

University of Washington

ABSTRACT

Many toolkit developers seek to streamline the visualization pro-
gramming process through structured support such as prescribed
templates and example galleries. However, few projects examine
how users organize their own visualization programs and how their
coding choices may deviate from the intents of toolkit developers,
impacting visualization prototyping and design. Further, is it pos-
sible to infer users’ reasoning indirectly through their code, even
when users copy code from other sources? We explore this ques-
tion through a qualitative analysis of 715 D3 programs on Observ-
able. We identify three levels of program organization based on
how users decompose their code into smaller blocks: Program-,
Chart-, and Component-Level code decomposition, with a strong
preference for Component-Level reasoning. In a series of inter-
views, we corroborate that these levels reflect how Observable users
reason about visualization programs. We compare common user-
made components with those theorized in the Grammar of Graph-
ics to assess overlap in user and toolkit developer reasoning. We
find that, while the Grammar of Graphics covers basic visualiza-
tions well, it falls short in describing complex visualization types,
especially those with animation, interaction, and parameterization
components. Our findings highlight how user practices differ from
formal grammars and reinforce ongoing efforts to rethink visual-
ization toolkit support, including augmenting learning tools and AI
assistants to better reflect real-world coding strategies.

Index Terms: Visualization toolkits, Code reuse.

1 INTRODUCTION

From designing bespoke visualizations in D3 [8] to orchestrat-
ing multi-chart interactions in Vega-Lite [28], visualization pro-
gramming is a valuable skill for the data science workforce [26].
However, users may struggle to write their own customized pro-
grams [4], even when adapting existing examples [6], making it
challenging to adopt more expressive toolkits like D3 [27]. One
popular solution is to generate code templates [18] that users can
populate with data variables [1,12]. However, templates do not nec-
essarily reflect how users themselves may reason about their own
code [4]. Broadly, we observe relatively few research projects in-
vestigating how visualization toolkit users organize their code, or
how these choices impact code comprehension and reuse [6, 21].
We focus on D3 given its popularity and complexity [4, 6, 12].

In response, we analyze how D3 users organize visualization
code to understand what code structures these users find intuitive.
We apply qualitative methods to investigate an established measure-
ment of code comprehension : code decomposition [9, 24, 29]. The

*Both authors contributed equally to this research
†e-mail: mylin@andrew.cmu.edu
‡e-mail: [heerpate, mlamkin, leibatt]@cs.washington.edu
§e-mail: hbako@umd.edu

abstraction and pattern-matching skills necessary for code decom-
position make it a critical pillar of computational thinking that helps
to distinguish novice programmers from experts [29, 34]. Further,
practicing program decomposition helps students develop metacog-
nitive awareness, and researchers have analyzed decomposition
strategies to observe students’ mental models of code in the class-
room [9]. With visualization languages, users must reason about
their code and visualization designs simultaneously [4, 6, 21], sug-
gesting that decomposition strategies could be analyzed to gain in-
sight into users’ mental models of visualization programs. Through
this analysis, we can establish frameworks for users’ mental mod-
els to ground visualization programming and design tools in actual
user behavior. Towards this goal, we address two core research
questions: How do D3 users (re)organize code copied from outside
sources (RQ1)? Further, do D3 users really organize their code
according to toolkit designers’ recommendations (RQ2)?

To answer these questions, we contribute a qualitative analysis of
D3 code decomposition strategies across 715 Observable [19] note-
books representing 24 distinct visualization types. Given D3 users
often copy from existing examples [6,12,14,18], we focus our first
analysis on how Observable users organize copied code (answering
RQ1). Our findings reveal three distinct granularities for decom-
posing D3 programs into smaller code blocks: component, chart,
and program level. Component-Level decomposition was the most
prevalent strategy. We complement our analysis with interviews of
7 Observable users, who confirm that they are purposeful in how
they structure their D3 code and share how their code structuring is
influenced by (inferred) toolkit and community best practices.

To understand how users’ mental models align with existing
toolkit design paradigms (answering RQ2), we compare common
user-made D3 components with the Grammar of Graphics (GoG).
We find high component overlap for common chart types such as
bar charts but diminishing coverage for more complex ones such
as streamgraphs. Further, several commonly used D3 component
types, such as interaction and parameterization, fall outside the
GoG, suggesting gaps between theory and real-world usage. These
user-driven insights validate ongoing efforts in visualization gram-
mar development and reveal new opportunities for building D3 sup-
port tools and resources that better reflect users’ code organization
strategies. In summary, this paper makes four contributions:

• A qualitative analysis of 715 Observable notebooks identi-
fying three levels of code decomposition and the impacts of
code copying on decomposition strategies.

• An interview study with 7 Observable users, which corrobo-
rates our qualitative findings and clarifies user rationales for
adopting different decomposition strategies.

• A comparison of user-made D3 code components with the
GoG, revealing actionable gaps between theory and practice.

• Design implications for tailoring educational materials and
AI-driven support to match real-word toolkit usage.

2 RELATED WORK

Visualization Code Reuse: Copying from examples is a key user
strategy for creating D3 visualizations [2, 4, 6]. For example, in
their analysis of 37,815 D3-related posts on Stack Overflow, Bat-
tle et al. observe that 14% of them reference just three sources:

https://arxiv.org/abs/2405.14341v5

Observable, the D3 gallery, or Bl.ocks.org [6]. However, D3 code
often contains uncommon syntax and code structures, making it dif-
ficult to reuse [6]. In-depth examples may over-complicate proto-
typing [6] or even lead to design fixation [20]. Example galleries
also facilitate reuse. Yang et al. find that while users want larger
galleries, creators struggle to maintain them [35]. Code reuse also
has pedagogical value. Recent work showed students who adapted
D3 examples created more bespoke visualizations and improved
their understanding of the code [13]. Our work complements these
findings by studying how example reuse impacts code organization,
revealing the impact of galleries on coding structure.

Visualization Templates: Several projects aim to support code
reuse through code templates. For example, Bako et al. contribute
templates for common D3 visualization and interaction types [1].
Harper et al. propose techniques for converting existing D3 visu-
alizations into templates [12]. Tools such as Ivy generalize these
ideas to aid creation and reuse [18]. However, templates are dif-
ficult to modify beyond their defined parameters, potentially im-
peding users’ creativity and workflows [4]. Recent work has intro-
duced structured methods for evaluating toolkit notations, reflecting
a growing need to systematize how users and developers articulate
data transformation and visual mapping [17]. Similarly, we aim to
strengthen the connection between toolkit usage and design.

Code Decomposition and Visualization Grammars: Code de-
composition is an established measure of student comprehension
and reasoning in CS education [24, 29, 34]. For example, analyz-
ing program decomposition strategies can elucidate relationships
between students’ metacognitive awareness and assignment out-
comes [9]. Outside the classroom, notebook decomposition strate-
gies have been analyzed to measure how users reason about data
science workflows [23, 25] and automatically reorganize computa-
tional notebooks to improve clarity [30]. Recent work also stud-
ies recurring patterns in D3 program structures across GitHub,
Bl.ocks.org, and Observable [1, 4, 12]. We adopt a similar analy-
sis approach. Note that while Observable’s cell structure makes it
easier to decompose code, researchers have been observing similar
D3 program decomposition prior to Observable as well [1, 6].

Formalisms such as the Grammar of Graphics [33] and Layered
Grammar of Graphics [31] have guided toolkit design for many
years and continue to influence recent work (e.g., [7,15,16]). How-
ever, it is unclear whether they align with how users reason about
code. One study found that users often reuse examples based on
layout or task similarity, factors not captured by formal grammars
[3]. Analyzing code structure offers a way to bridge this gap [21].

3 DATA COLLECTION & PREPARATION

We collected a diverse range of 240 Observable [19] notebooks
spanning 24 visualization types identified in previous work [5]. We
followed a strategy of searching by visualization type and screen-
ing notebooks for quality and uniqueness, detailed in supplemental
materials (section 7). Similar to prior work [1, 2, 6], we observe
that most Observable notebooks are duplicates that copy code from
older notebooks and only make minor revisions such as importing a
different dataset. Given the importance of code copying in creating
new D3 programs (see section 2), we also collected ≈ 20 dupli-
cates for each of our initial 240 notebooks (10 per vis. type), which
expanded our dataset to 715 total notebooks. In the paper, we fo-
cus on the 240 unique notebooks. Since 475 of 715 notebooks are
duplicates, one can extrapolate our results to the broader corpus.

Further, we define the following terms for our analysis: decom-
pose refers to how users “organize,” “structure,” “break down” and
otherwise separate code within a single Observable notebook us-
ing cells [10]. Modularity refers to the extent to which users de-
compose their code into separate pieces, i.e., modules such as code
cells [6, 24]. Sources are D3 programs that provide code for other
programs. It could be a notebook on Observable (e.g. from the D3

Gallery) or an external D3 program (e.g. from GitHub Gist).

4 CAN WE INFER USER REASONING FROM D3 CODE?
We seek to understand how Observable users reason about D3 pro-
grams and whether this can be determined indirectly through ob-
serving users’ code decomposition strategies. However, the visu-
alization literature is unclear on how purposefully users organize
reused code compared to code written from scratch. To this end,
we perform a mixed methods evaluation of our corpus to examine
notebook code structure (subsection 4.1), inspect code copying of
sources (subsection 4.2), and compare decomposition strategies of
corpus notebooks to their source notebooks (subsection 4.3).

To develop our codebook, a random sample of 15 notebooks
from the six most popular D3 visualization types (observed in
[1, 5, 6]) were collected with the procedure in section 3. These 15
notebooks were distinct from the 715 notebooks in the main corpus.
The two lead authors independently annotated these notebooks, af-
ter which the entire author team met to discuss the codebook. The
lead authors re-annotated the 15 notebooks again, achieving a Co-
hen’s Kappa inter-rater reliability score [11] of 0.941. Finally, the
lead authors coded the 240 unique notebooks collected from sec-
tion 3 over 15 weeks. Discrepancies were resolved through discus-
sions. In this section, we detail findings from our coding (the full
codebook can be found in our supplemental materials).

4.1 How Do D3 Users Decompose Programs?
We examined corpus notebooks to identify the number and func-
tionality of code cells and the relationships between cells, such as
variable and function dependencies, which revealed three high-level
code decomposition methods.

Component-Level decomposition was the most common strat-
egy observed in our analysis, appearing in 83.8% of notebooks.
Users create each code cell as a distinct component. Each com-
ponent builds on previously defined components to implement a
visualization (see Figure 1). Individual components also tend to
fall under one step of the visualization process (e.g. importing the
dataset, specifying encodings like positional scales).

Chart-Level decomposition was present in 7.1% of notebooks.
Illustrated in Figure 1, it organizes code by the target output (i.e.,
an entire visualization) instead of visualization steps. Users create
a helper function cell that generates the target visualization type.

Program-Level decomposition was present in only 6.3% of
notebooks. Code is not decomposed and instead is placed all in-
side a single Observable cell. We acknowledge that users could
be using white space to segment their code (see section 2), but the
low prevalence of this strategy suggests that users are deliberately
choosing to forego decomposition. We interview users about their
decision-making strategies when organizing D3 code in section 5.

Only 2.9% of notebooks show both Component- and Chart-Level
structure (see supplemental materials for examples of all strategies).
Overall, our findings suggest that Observable users have specific
ways they prefer to organize their code. Further, we may be able to
understand how users reason about their D3 code by observing
how they (re)structure copied code by decomposition strategy
(H1), which we explore in the following sections.

4.2 How do D3 Users Leverage Copied Code?
To explore our hypothesis H1 from subsection 4.1, we analyze code
reuse in Observable notebooks. Verbatim copying may indicate that
Observable users are not thinking deeply about their D3 programs.
However, if we observe a range of code-copying patterns, this may
be indicative of deliberate reasoning processes.

We identify four code-copying strategies; two involve no direct
code reuse: “original creation,” where users built notebooks from
scratch (136 out of 240 total notebooks, 56.7%), and “orthogonal
code forking,” where users forked a notebook but did not reuse

https://observablehq.com/@d3/gallery
https://observablehq.com/@d3/gallery
https://gist.github.com/

{.}

{.}

{.}

Component-Level

{.}

Data Geometric Positional Layers ScalesFunctions
Legend:

{.}

{.}

{.}

Chart-Level

{.}

Program-Level{.}
chart = functionName(yourData, {

x: d => d.date, y: d => d.price, ...
})

{.}
function functionName(data, {

x = ([x]) => x,
y = ([, y]) => y,
.
.
.

} = {}) {
const svg = d3.create('svg')

.

.

.
}

{.}
yourData = Array(275) [Array(4), Array(4), ...]

Creating the function with
visualization type and
design specifications

Calling the function with a
specific dataset

Importing data

{.}
width =
600 Altering the

width and
height

Creating the
SVG container,

joining the data,
altering the

style

Creating
functions that
use chart and

SVG properties
to generate
ideal scaling

and spacing of
visual

components

{.}
height = 750

{.}
xScale = d3.scaleLinear()

 .domain([1, 9])
 .range([margin.left, width -
margin.right])

{.}
yScale = d3.scaleLinear()

 .domain([0, 24])
 .range([height -
margin.bottom, margin.top])

{.}
{

const svg = d3.create('svg')
 .attr('width', width)
 .attr('height', height)

.

.

.

return container.node();
}

{.}
yourData = Array(275) [Array(4), Array(4), ...] Importing data

Figure 1: Centered are three abstracted notebooks with four color-coded visualization components. Program-Level has all four components
in one code cell. Chart-Level has a function code cell, a function building code cell, and a data code cell. Lastly, Component-Level has all
four components in different code cells. To the left is a sample of Chart-Level Decomposition. To the right is an example of Component-Level
Decomposition.

any code (5/240 notebooks, 2.1%). The remaining two strate-
gies involve code reuse: “Observable sourced,” where code was
reused from another Observable notebook (86/240, 35.8%), and
“outside sourced,” where code was copied from external platforms
such as GitHub (13/240, 5.4%). Over half of the notebooks did
not copy code; of those that did, most sourced from Observable.
These percentages represent the proportion of notebooks labeled
with reuse strategies (Observable- or outside-sourced) relative to
the full dataset. We analyze how code copying influenced selected
decomposition strategies in subsection 4.3.

4.3 How Does Code Copying Influence Decomposition?
To explore H1 further, we refine our hypothesis: if Observable note-
books are a faithful reflection of the author’s reasoning process, we
posit that notebook authors will (1) write code from scratch that
reflects their preferred decomposition method or (2) make substan-
tive changes to copied code if the source clashes with how they
prefer to decompose D3 code. To test this, we compared decompo-
sition strategies in notebooks with copied code to their sources (i.e.,
the notebook from which the code was copied). Two key patterns
emerged. First, 76.2% of notebooks retained Component-Level de-
composition when it was already used in the source. Second, when
changing strategies, users shifted exclusively toward Component-
Level decomposition. For example, 19.8% shifted from Chart-Level
to Component-Level and 9.3% from Program-Level to Component-
Level. Further, zero notebooks shifted in the opposite direction.

13 Observable notebooks sourced code from outside Observable.
A manual review of their code suggests that 84.62% these note-
books still employed Component-Level decomposition, similar to
previous findings [1]. These findings suggest that Component-
Level decomposition is not simply a byproduct of Observ-
able’s cellular environment and may reflect how users gener-
ally reason about D3 code. Similarly, all 7.9% of notebooks with
inaccessible deprecated D3 Gallery notebook sources displayed
Component-Level decomposition. Lastly, 80.9% of the Original
and Orthogonal notebooks used Component-Level decomposition.
Together, these results suggest that users prefer Component-Level
decomposition, even if they do not inherit any code.

4.4 Section Summary
Our findings show that users reason about D3 code at the Compo-
nent level, whether coding from scratch or reusing copied code,
suggesting that Component-Level decomposition aligns with
how users reason about D3 and supporting H1.

5 VALIDATING OUR FINDINGS WITH USER INTERVIEWS

Our analysis suggests that the structure of a D3 program could be
used as a proxy for inferring how its author reasons about visual-

ization code. To further understand how decomposition strategies
relate to how people think about their code, we conducted an IRB-
approved study with N=7 D3 users about their code organization
on Observable. Participants, recruited via professional networks
and Observable, varied in age, education, and occupation (details
in supplemental materials).

5.1 Interview Protocol

Participants were given an overview of the study and asked to sign
a consent form. They also completed an optional survey on demo-
graphics and experience with statistics, visualization, and Observ-
able. Interviews were conducted on Zoom, lasting an average of 34
minutes each. Interviews began with participants sharing an Ob-
servable D3 notebook, explaining its purpose, code organization,
and debugging strategies. They were then asked about their D3 and
Observable use, influences, and reliance on sources.

5.2 Emerging Themes from the Interviews

All participants shared specific reasons for their code organization.
P4 and P6 built functions to facilitate reuse. Participants also dis-
cussed thoughtful deviations from usual strategies. P5, who pri-
marily uses Component-Level decomposition, used function calls
for previously built charts to keep his visualization dashboard neat.
P4 sometimes puts all the code into a single cell to test new ideas
or for single-use visualizations. P7 uses multiple new cells when
exploring new ideas and later streamlines into a single function.

Using certain decomposition levels also helped participants
achieve specific goals. P2 mentioned his team found that using a
component approach to organizing the code, instead of single cells,
led to better visualization rendering in their web application. P3,
who used Component-Level decomposition, explained that building
a visualization step-by-step helped him understand the code better.
P1 used new cells to enable interactions with his visualizations.

Debugging was a common challenge, in part due to JavaScript’s
silent failures [6]. P2 and P3 pointed to splitting code into dis-
tinct cells (i.e., Component-Level decomposition) as helping iden-
tify problems. P1 and P7 typically do not use Component-Level
decomposition, but created new cells to debug. This aligns with
prior work, which finds that Component-Level decomposition can
make assignments easier to debug and faster to complete [9].

Lastly, participants shared how they learned to structure their
code from examples. P3 credits learning sources for shaping his
Component-Level coding style. P4 revised his function-writing
style after finding D3 co-creator Mike Bostock’s code organization
to be clearer. P6 discussed “It’s easy to learn [using Observable].
I can go open anybody’s notebook [and see] this is how they have
written it... I can say that I learn from other people’s code.” P6’s

Table 1: Percent Coverage of Component by GoG Across Vis Types

Visualization
Type

GoG
Coverage

Visualization
Type

GoG
Coverage

Grouped Bar Chart 81.3% Box Plot 65.3%
Line Chart 78.6% Hexabin 65.2%
Pie Chart 75.6% Heatmap 62.6%
Bar Chart 75.4% Chord 61.2%
Stacked Bar Chart 74.2% Word Cloud 59.7%
Geographic Map 74.1% Waffle Chart 59.3%
Scatterplot 73.9% Bubble Chart 57.1%
Area Chart 70.7% Sunburst 56.8%
Radial Chart 68.3% Sankey 55.8%
Parallel Coord. 66.9% Treemap 54.5%
Graph 66.4% Voronoi 53.9%
Donut Chart 65.8% Streamgraph 48.6%

code structure looks very similar to Observable D3 Gallery note-
books since he frequently relies on them for inspiration.

Combining these interview findings with our results from sec-
tion 4, we argue that users deliberately structure their D3 code
to match how they reason about visualization programs, with
a common preference for Component-Level decomposition. We
acknowledge that future research is needed to quantitatively vali-
date H1. However, we believe these results are a strong starting
point for approximating user reasoning through D3 components.

6 WHAT CAN WE LEARN FROM USERS’ DECOMPOSITION
STRATEGIES IN D3 CODE?

Inspired by prior work [21], we reuse our results from section 4 to
compare user-made D3 components with the Grammar of Graphics
(GoG) [32] and Layered GoG [31], which formalize how toolkits
and languages should ideally be structured. While established for-
malisms often reflect how toolkit developers think, they do not nec-
essarily reflect how end users themselves reason about visualization
code [21]. Thus, we seek to identify and characterize misalign-
ments, which could reveal opportunities to improve toolkit usage
and design. Note that we refer to the GoG and LGoG collectively
as the GoG (Data and Aesthetic Mappings, Statistical Transforma-
tion, Geometric Object, Scale, and Coordinate System overlap with
the LGoG; the GoG additionally includes Data Transformation).

6.1 Coverage By Visualization Type
We calculate GoG overlap based on component counts for each
visualization type in Table 1. Common visualization types have
greater GoG overlap. For example, Battle et al. report Geographic
Map, Line Chart, Bar Chart, and Scatterplot as the most popular vi-
sualization types in their analysis of D3 usage [5], which also have
high overlap with the GoG. As complexity increases, GoG over-
lap drops. This suggests that the Grammar of Graphics supports
common charts but is less effective for representing customized
designs, where D3 is considered more useful [12, 35], answering
RQ2. The diminishing returns between the GoG and D3 suggest
an exciting opportunity to infer higher-level abstractions from real-
world toolkit usage. Also, we emphasize that these results general-
ize to the full dataset of 715 notebooks, including duplicates.

6.2 Isolated Components
We examined components that were often isolated in their own cell
in Table 2, indicating deliberate structuring decisions. 72.9% of
interactions are isolated, likely due to their complexity, which mo-
tivates their separation from other components [4, 28]. Only 54%
of animations are separated, a likely side effect of how they are
structured as calls to existing components, making them harder to
reason about and debug. These findings provide usage-driven sup-
port for current (e.g., [28]) and future efforts to cover overlooked
areas like parameterization, animation, and interaction.

Table 2: Percentage of isolated instances of each component.

Component Percentage Isolated
Animation 54.29%
Coordinate System 70.73%
Data and Aesthetic Mappings 93.83%
Data Transformation 87.66%
Geometric Object 74.42%
Interaction 72.90%
Graph/Tree Layout 57.14%
Parameterization 86.35%
Scale 87.50%
Statistical Transformation 61.11%

7 DISCUSSION: IMPLICATIONS FOR FUTURE RESEARCH

Analyzing D3 Usage to Assess Existing Theory: To the best of
our knowledge, our paper provides the first qualitative analysis of
overlap between D3 usage and the GoG [32]. For RQ2, we find
high alignment for simpler charts like bars and lines, while com-
plex types such as word clouds and Sankey diagrams fall outside
the GoG framework. Notably, usage of essential D3 features like
animations, interactions, layouts, and parameterization is not cov-
ered by the GoG [28]. While the GoG is not expected to capture
every use case, our findings provide usage-driven evidence for aug-
menting visualization grammars such as by validating recent devel-
opments in interaction grammar design (e.g., [28]).

Leveraging Decomposition Strategies for Learning: Our user
study shows users purposefully adopt decomposition strategies
to support their workflows both when coding from scratch and
when reusing code, thus answering RQ1. Educators can lever-
age our findings by modularizing tutorials or assigning Program-
Level code and observing how students restructure it as an informal
assessment. AI tools could also be trained to organize and label
code by components (e.g., data handling, interactions) and provide
component-focused explanations, producing more intuitive, well-
structured output. In preliminary tests, we observed mixed results
when prompting LLMs to label and generate tutorials for individual
components. We observed notable hallucinations and errors, espe-
cially in the tutorials, revealing opportunities for future research.

Developing Resources to Enhance Visualization Design
Through Component Reuse: Component-Level decomposition
can support efficient design by mapping common visualization
components across multiple notebooks and visualization types. A
resource linking reusable components across visualizations could
help users quickly construct custom charts without starting from
scratch [22]. In this way, users can explore D3 code along two
levels of abstraction simultaneously: Component-Level semantics
and the low-level D3 syntax. Such analysis may even enable auto-
matic component detection in other languages, helping to synthe-
size language abstraction levels automatically (e.g., generate Vega-
Lite analogs for more complex toolkits). By providing a more
structured, component-based pathway to visualization design, this
method could facilitate faster design iteration and experimentation.

Limitations. Notebooks were collected from Observable, repre-
senting a subset of D3 users. Some Observable users also use inac-
cessible private notebooks. While we employed multiple strategies
to increase the rigor of our notebook and source collection (see sec-
tion 3), there are notebooks where we were unable to locate or ana-
lyze the source. Thus, decomposition inheritance may not be fully
verifiable. We encourage future studies to test our hypotheses.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on
OSF at https://osf.io/sudb8/?view_only=

https://observablehq.com/@d3/gallery
https://osf.io/sudb8/?view_only=cc72bdc685804e478852a96297328eb8

cc72bdc685804e478852a96297328eb8.

ACKNOWLEDGMENTS

This research was funded in part by a Sloan Research Fellowship, a
Mary Gates Research Scholarship, a Google gift, and NSF awards
IIS-2402718, IIS-2141506, and CSGrad4US-2313998

REFERENCES

[1] H. Bako, A. Varma, A. Faboro, M. Haider, F. Nerrise, B. Kenah, and
L. Battle. Streamlining visualization authoring in d3 through user-
driven templates. In 2022 IEEE Visualization and Visual Analytics
(VIS), pp. 16–20. IEEE Computer Society, Los Alamitos, CA, USA,
oct 2022. doi: 10.1109/VIS54862.2022.00012 1, 2, 3

[2] H. K. Bako, X. Liu, L. Battle, and Z. Liu. Understanding how
designers find and use data visualization examples. IEEE TVCG,
29(1):1048–1058, 2023. doi: 10.1109/TVCG.2022.3209490 1, 2

[3] H. K. Bako, X. Liu, G. Ko, H. Song, L. Battle, and Z. Liu. Unveil-
ing how examples shape visualization design outcomes. IEEE TVCG,
31(1):1137–1147, Jan 2025. doi: 10.1109/TVCG.2024.3456407 2

[4] H. K. Bako, A. Varma, A. Faboro, M. Haider, F. Nerrise, B. Kenah,
J. P. Dickerson, and L. Battle. User-driven support for visualization
prototyping in d3. In Proceedings of the 28th International Confer-
ence on Intelligent User Interfaces, IUI ’23, p. 958–972. ACM, New
York, NY, USA, 2023. doi: 10.1145/3581641.3584041 1, 2, 4

[5] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and
M. Stonebraker. Beagle: Automated Extraction and Interpretation
of Visualizations from the Web, p. 1–8. CHI ’18. ACM, New York,
NY, USA, 2018. doi: 10.1145/3173574.3174168 2, 4

[6] L. Battle, D. Feng, and K. Webber. Exploring d3 implementation chal-
lenges on stack overflow. In 2022 IEEE Visualization and Visual Ana-
lytics (VIS), pp. 1–5, 2022. doi: 10.1109/VIS54862.2022.00009 1, 2,
3

[7] K. Batziakoudi, F. Cabric, S. Rey, and J.-D. Fekete. Lost in mag-
nitudes: Exploring visualization designs for large value ranges. In
Proceedings of the 2025 CHI Conference on Human Factors in Com-
puting Systems, CHI ’25. Association for Computing Machinery, New
York, NY, USA, 2025. doi: 10.1145/3706598.3713487 2

[8] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents.
IEEE TVCG, 17(12):2301–2309, Dec. 2011. doi: 10.1109/TVCG.
2011.185 1

[9] C. Charitsis, C. Piech, and J. C. Mitchell. Detecting the reasons for
program decomposition in cs1 and evaluating their impact. In Pro-
ceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1, SIGCSE 2023, p. 1014–1020. ACM, New York, NY,
USA, 2023. doi: 10.1145/3545945.3569763 1, 2, 3

[10] C. Chen, B. Lee, Y. Wang, Y. Chang, and Z. Liu. Mystique: Decon-
structing svg charts for layout reuse. IEEE TVCG, 30(1):447–457,
2024. doi: 10.1109/TVCG.2023.3327354 2

[11] J. Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960. 2

[12] J. Harper and M. Agrawala. Converting basic d3 charts into reusable
style templates. IEEE TVCG, 24(03):1274–1286, mar 2018. doi: 10.
1109/TVCG.2017.2659744 1, 2, 4

[13] M. Hedayati and M. Kay. “choose-your-own” d3 labs for learning
to adapt online code. In 2023 IEEE VIS Workshop on Visualization
Education, Literacy, and Activities (EduVis), pp. 49–54, Oct 2023.
doi: 10.1109/EduVis60792.2023.00014 2

[14] E. Hoque and M. Agrawala. Searching the visual style and structure
of d3 visualizations. IEEE TVCG, 26(1):1236–1245, 2020. doi: 10.
1109/TVCG.2019.2934431 1

[15] M. Kay. ggdist: Visualizations of distributions and uncertainty in the
grammar of graphics. IEEE TVCG, 30(1):414–424, Jan 2024. doi: 10
.1109/TVCG.2023.3327195 2

[16] H. Kim, Y.-S. Kim, and J. Hullman. Erie: A declarative grammar for
data sonification. In Proceedings of the 2024 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’24. Association for Com-
puting Machinery, New York, NY, USA, 2024. doi: 10.1145/3613904
.3642442 2

[17] N. Kruchten, A. M. McNutt, and M. J. McGuffin. Metrics-Based
Evaluation and Comparison of Visualization Notations . IEEE TVCG,
30(01):425–435, Jan. 2024. doi: 10.1109/TVCG.2023.3326907 2

[18] A. M. McNutt and R. Chugh. Integrated visualization editing via pa-
rameterized declarative templates. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, CHI ’21. ACM,
New York, NY, USA, 2021. doi: 10.1145/3411764.3445356 1, 2

[19] Observable, Inc. Observable. https://observablehq.com, 2024.
1, 2

[20] P. Parsons, P. Shukla, and C. Park. Fixation and creativity in data
visualization design: Experiences and perspectives of practitioners.
In 2021 IEEE Visualization Conference (VIS), pp. 76–80, 2021. doi:
10.1109/VIS49827.2021.9623297 2

[21] X. Pu and M. Kay. How data analysts use a visualization grammar
in practice. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, CHI ’23, pp. 1–22. ACM, New York,
NY, USA, 2023. doi: 10.1145/3544548.3580837 1, 2, 4

[22] D. Raghunandan, Z. Cui, K. Krishnan, S. Tirfe, S. Shi, T. D. Shrestha,
L. Battle, and N. Elmqvist. Lodestar: Supporting rapid prototyping
of data science workflows through data-driven analysis recommenda-
tions. Information Visualization, 23(1):21–39, 2024. doi: 10.1177/
14738716231190429 4

[23] D. Raghunandan, A. Roy, S. Shi, N. Elmqvist, and L. Battle. Code
code evolution: Understanding how people change data science note-
books over time. In Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’23, pp. 1–12. ACM, New
York, NY, USA, 2023. doi: 10.1145/3544548.3580997 2

[24] K. M. Rich, T. A. Binkowski, C. Strickland, and D. Franklin. De-
composition: A k-8 computational thinking learning trajectory. In
Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research, ICER ’18, p. 124–132. ACM, New York, NY,
USA, 2018. doi: 10.1145/3230977.3230979 1, 2

[25] A. Rule, A. Tabard, and J. D. Hollan. Exploration and explanation in
computational notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI ’18, p. 1–12. ACM,
New York, NY, USA, 2018. doi: 10.1145/3173574.3173606 2

[26] L. Ryan, D. Silver, R. S. Laramee, and D. Ebert. Teaching data vi-
sualization as a skill. IEEE Computer Graphics and Applications,
39(2):95–103, 2019. doi: 10.1109/MCG.2018.2889526 1

[27] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization authoring
systems. IEEE TVCG, 26(1):461–471, 2020. doi: 10.1109/TVCG.
2019.2934281 1

[28] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE TVCG, 23(1):341–350,
Jan 2017. doi: 10.1109/TVCG.2016.2599030 1, 4

[29] X. Tang, Y. Yin, Q. Lin, R. Hadad, and X. Zhai. Assessing compu-
tational thinking: A systematic review of empirical studies. Comput-
ers & Education, 148:103798, 2020. doi: 10.1016/j.compedu.2019.
103798 1, 2

[30] S. Titov, Y. Golubev, and T. Bryksin. Resplit: Improving the structure
of jupyter notebooks by re-splitting their cells. In 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 492–496, 2022. doi: 10.1109/SANER53432.2022.
00066 2

[31] H. Wickham. A layered grammar of graphics. Journal of Computa-
tional and Graphical Statistics, 19(1):3–28, 2010. doi: 10.1198/jcgs.
2009.07098 2, 4

[32] L. Wilkinson. The grammar of graphics. Springer New York, 2005.
doi: 10.1007/0-387-28695-0 4

[33] L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnos-
tics. In Information Visualization, IEEE Symposium on, pp. 157–164.
IEEE Computer Society, Los Alamitos, CA, USA, Oct 2005. doi: 10.
1109/INFVIS.2005.1532142 2

[34] A. Yadav, C. Ocak, and A. Oliver. Computational thinking and
metacognition. TechTrends, 66(3):405–411, 2022. doi: 10.1007/
s11528-022-00695-z 1, 2

[35] J. Yang, A. M. McNutt, and L. Battle. Considering visualization ex-
ample galleries. In Proc. IEEE VL/HCC 2024, pp. 329–343, 2024.
doi: 10.1109/VL/HCC60511.2024.00043 2, 4

https://osf.io/sudb8/?view_only=cc72bdc685804e478852a96297328eb8
https://observablehq.com

	Introduction
	Related Work
	Data Collection & Preparation
	Can We Infer User Reasoning From D3 Code?
	How Do D3 Users Decompose Programs?
	How do D3 Users Leverage Copied Code?
	How Does Code Copying Influence Decomposition?
	Section Summary

	Validating Our Findings With User Interviews
	Interview Protocol
	Emerging Themes from the Interviews

	What Can We Learn From Users' Decomposition Strategies in D3 Code?
	Coverage By Visualization Type
	Isolated Components

	Discussion: Implications for Future Research

